organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(3-Methylbut-2-en-1-yl)-1,2-benzisothiazol-3(2H)-one 1.1-dioxide

Muhammad Nadeem Arshad,^a M. Nawaz Tahir,^b* Islam Ullah Khan,^a Muhammad Humayun Bilal^a and Hafiz Mubashar-ur-Rehman^a

^aDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 28 March 2009; accepted 31 March 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.083; data-to-parameter ratio = 16.2.

In the title compound, C₁₂H₁₃NO₃S, a saccharin derivative, the dihedral angle between the aromatic and isothiazole rings is 2.91 (12)°. The planar 3,3-dimethylallyl group [maximum deviation = 0.0086 (16) Å is oriented at dihedral angles of 71.86 (7) and 74.35 (7)° with respect to the aromatic and isothiazole rings, respectively. In the crystal structure, weak intermolecular $C-H\cdots O$ interactions link the molecules into chains along the c axis. A weak $C-H\cdots\pi$ interaction is also present.

Related literature

For the biological activity of saccharine derivatives, see: Primofiore et al. (1997). For related structures, see: Arshad et al. (2008); Kruszynski & Czestkowski (2001); Siddiqui et al. (2007); Yu et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

C₁₂H₁₃NO₃S $M_r = 251.29$ Orthorhombic, Pna21 a = 9.4120 (5) Å b = 19.4108 (11) Å c = 6.5261 (4) Å

 $V = 1192.28 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 296 K $0.32\,\times\,0.24\,\times\,0.22$ mm

Data collection

Bruker Kappa APEXII CCD area-7340 measured reflections detector diffractometer 2525 independent reflections Absorption correction: multi-scan 2304 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2005) $R_{\rm int} = 0.019$ $T_{\rm min} = 0.924, \ T_{\rm max} = 0.946$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.083$	$\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
2525 reflections	Absolute structure: Flack (1983),
156 parameters	837 Friedel pairs
1 restraint	Flack parameter: 0.02 (8)

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots$ $C5-H5\cdots O1^i$ 0.93 2.56 3.391 (2) 149 $C8-H8A\cdots O2^{ii}$ 0.97 2.51 3.436 (3) 160					
$\begin{array}{cccccccc} C5-H5\cdots O1^{i} & 0.93 & 2.56 & 3.391 \ (2) & 149 \\ C8-H8A\cdots O2^{ii} & 0.97 & 2.51 & 3.436 \ (3) & 160 \end{array}$	$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots Cg1^{iii}$ 0.93 2.89 3.664 (2) 141	$C5 - H5 \cdots O1^{i}$ $C8 - H8A \cdots O2^{ii}$ $C3 - H3 \cdots Cg1^{iii}$	0.93 0.97 0.93	2.56 2.51 2.89	3.391 (2) 3.436 (3) 3.664 (2)	149 160 141

Symmetry codes: (i) -x + 1, -y + 1, $z + \frac{1}{2}$; (ii) x, y, z - 1; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, z. Cg1 is the centroid of the C1-C6 ring.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042-120607-PS2-183).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2656).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kruszynski, R. & Czestkowski, W. (2001). Acta Cryst. E57, o516-o518.
- Primofiore, G., Da Settimo, F., La Motta, C., Simorini, F., Minutolo, A. & Boldrini, E. (1997). Farmaco, 52, 583-588.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, 04116.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yu, G.-P., Xu, Z.-J., Xu, L.-Z. & Aisa, H. A. (2008). Acta Cryst. E64, 0805.

supplementary materials

Acta Cryst. (2009). E65, o986 [doi:10.1107/S1600536809012021]

2-(3-Methylbut-2-en-1-yl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide

M. N. Arshad, M. N. Tahir, I. U. Khan, M. H. Bilal and H. Mubashar-ur-Rehman

Comment

The sodium salt of 1,2-benzisothiazole-3(2H)-one-1,1-dioxide is commonly known as saccharine, a sweetener. The derivatives of this compound are biologically active (Primofiore *et al.*, 1997) and used for the syntheses of various biologically active heterocyclic compounds. We report herein the crystal structure of the title compound, (I), as part of our ongoing studies on thiazine related heterocycles (Arshad *et al.*, 2008).

The crystal structures of 3-methylbut-2-enyl)ammonium chloride, (II) (Kruszynski & Czestkowski, 2001), 2-(chloromethyl)-1,2-benzisothiazole-1,1,3(2*H*) -trione, (III) (Siddiqui *et al.*, 2007) and 2-*n*-butyl-1,2-benziso- thiazol-3(2*H*)-one, (IV) (Yu *et al.*, 2008) have been published.

In the molecule of (I) (Fig 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6) and B (S1/N1/C1/C6/C7) are, of course, planar and they are oriented at a dihedral angle of 2.91 (12)°. So, benzisothiazole ring system is nearly coplanar. The 3,3-dimethylallyl moiety C (C8-C12) is also planar with a maximum deviation of 0.0086 (16) Å for C10 atom, and it is oriented with respect to rings A and B at dihedral angles of A/C = 74.35 (7) and B/C = 71.86 (7) °. Atoms O1, O2 and O3 are 1.2007 (17), -1.2296 (19) and -0.0441 (27) Å away from the ring plane of B, respectively.

In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into chains along the c axis, in which they may be effective in the stabilization of the structure. There also exists a weak C—H··· π interaction (Table 1).

Experimental

For the preparation of the title compound, sodium salt of saccharine (1 g, 4.88 mmol) was dissolved in dimethylformamide (5 ml) in a round bottom flask (25 ml) equipped with condenser. Then, 3,3-dimethylallyl bromide (0.73 g, 4.88 mmol) was added to the solution and stirred at 353-373 K for 3 h. The progress of the reaction was observed by TLC. At completion of reaction, the mixture was poured on ice, precipitates obtained were filtered, washed with distilled water and dried. The residue was recrystalized in methanol to obtain the suitable crystals of the title compound.

Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

2-(3-Methylbut-2-en-1-yl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide

$F_{000} = 528$
$D_{\rm x} = 1.400 {\rm Mg m}^{-3}$
Mo K α radiation $\lambda = 0.71073$ Å
Cell parameters from 2818 reflections
$\theta = 2.4 - 28.8^{\circ}$
$\mu = 0.27 \text{ mm}^{-1}$
T = 296 K
Rod, colorless
$0.32 \times 0.24 \times 0.22 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer	2525 independent reflections
Radiation source: fine-focus sealed tube	2304 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
Detector resolution: 7.40 pixels mm ⁻¹	$\theta_{\text{max}} = 28.8^{\circ}$
T = 296 K	$\theta_{\min} = 2.4^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -26 \rightarrow 26$
$T_{\min} = 0.924, T_{\max} = 0.946$	$l = -8 \rightarrow 4$
7340 measured reflections	

Refinement

Refinement on F^2

Hydrogen site location: inferred from neighbouring sites

Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_0^2) + (0.05P)^2 + 0.1276P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.083$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
2525 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
156 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 837 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.02 (8)
Secondary atom site location: difference Fourier map	

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S 1	0.39059 (4)	0.43722 (2)	0.22028 (8)	0.0360(1)
01	0.47203 (15)	0.49780 (6)	0.1846 (2)	0.0527 (5)
O2	0.27683 (15)	0.44174 (7)	0.3626 (3)	0.0501 (5)
O3	0.34253 (18)	0.31180 (9)	-0.2062 (3)	0.0681 (6)
N1	0.32910 (16)	0.40665 (8)	-0.0015 (3)	0.0420 (5)
C1	0.47927 (19)	0.31849 (9)	0.1051 (3)	0.0430 (6)
C2	0.5491 (2)	0.25556 (10)	0.1123 (4)	0.0571 (7)
C3	0.6312 (2)	0.24143 (11)	0.2810 (5)	0.0643 (8)
C4	0.6463 (2)	0.28766 (11)	0.4407 (4)	0.0582 (8)
C5	0.5766 (2)	0.35100 (10)	0.4341 (4)	0.0474 (6)
C6	0.49541 (17)	0.36438 (8)	0.2640 (3)	0.0377 (5)
C7	0.37937 (19)	0.34237 (10)	-0.0545 (3)	0.0449 (6)
C8	0.2217 (2)	0.44531 (10)	-0.1171 (4)	0.0480 (6)
С9	0.0741 (2)	0.43125 (10)	-0.0398 (4)	0.0492 (7)
C10	-0.0319 (2)	0.40469 (9)	-0.1434 (4)	0.0476 (6)
C11	-0.0249 (3)	0.38285 (16)	-0.3615 (5)	0.0740 (10)
C12	-0.1738 (2)	0.39260 (14)	-0.0418 (5)	0.0718 (9)
H2	0.54056	0.22393	0.00600	0.0685*
H3	0.67821	0.19935	0.28810	0.0770*
H4	0.70306	0.27651	0.55253	0.0698*
Н5	0.58470	0.38275	0.54021	0.0569*
H8A	0.22741	0.43275	-0.26069	0.0577*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H8B	0.24147	0.49421	-0.10592	0.0577*
Н9	0.05601	0.44262	0.09618	0.0591*
H11A	0.06668	0.39430	-0.41673	0.1109*
H11B	-0.09740	0.40615	-0.43825	0.1109*
H11C	-0.03930	0.33398	-0.37040	0.1109*
H12A	-0.16911	0.40717	0.09857	0.1074*
H12B	-0.19663	0.34444	-0.04742	0.1074*
H12C	-0.24574	0.41849	-0.11203	0.1074*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0419 (2)	0.0326 (2)	0.0335 (2)	-0.0031(1)	-0.0001 (2)	-0.0011 (2)
01	0.0694 (8)	0.0384 (5)	0.0503 (10)	-0.0151 (5)	-0.0077 (8)	0.0034 (6)
02	0.0521 (8)	0.0565 (8)	0.0418 (9)	0.0060 (5)	0.0063 (7)	-0.0040 (7)
03	0.0786 (10)	0.0716 (10)	0.0540 (10)	-0.0120 (8)	-0.0050 (9)	-0.0261 (8)
N1	0.0438 (8)	0.0479 (8)	0.0343 (9)	-0.0056 (6)	-0.0020 (7)	-0.0034 (7)
C1	0.0392 (9)	0.0402 (8)	0.0495 (12)	-0.0075 (6)	0.0084 (8)	-0.0088 (8)
C2	0.0494 (11)	0.0444 (9)	0.0775 (17)	-0.0011 (8)	0.0111 (11)	-0.0155 (11)
C3	0.0501 (11)	0.0438 (9)	0.099 (2)	0.0072 (8)	0.0129 (12)	0.0057 (12)
C4	0.0462 (10)	0.0532 (11)	0.0752 (18)	0.0057 (8)	-0.0045 (11)	0.0117 (11)
C5	0.0475 (10)	0.0434 (9)	0.0513 (14)	-0.0043 (7)	-0.0044 (9)	0.0014 (9)
C6	0.0352 (7)	0.0336 (6)	0.0442 (12)	-0.0041 (5)	0.0046 (7)	-0.0010(7)
C7	0.0436 (9)	0.0482 (9)	0.0430 (12)	-0.0128 (7)	0.0093 (8)	-0.0107 (9)
C8	0.0458 (10)	0.0566 (10)	0.0417 (12)	-0.0100 (8)	-0.0051 (9)	0.0101 (9)
C9	0.0486 (10)	0.0525 (10)	0.0466 (14)	0.0003 (8)	0.0024 (9)	0.0071 (9)
C10	0.0421 (10)	0.0398 (8)	0.0609 (14)	0.0017 (7)	-0.0025 (10)	0.0120 (9)
C11	0.0618 (14)	0.0871 (17)	0.0730 (19)	-0.0177 (12)	-0.0137 (13)	-0.0061 (15)
C12	0.0427 (11)	0.0706 (14)	0.102 (2)	0.0039 (9)	0.0049 (13)	0.0159 (14)

Geometric parameters (Å, °)

S1—O1	1.4229 (13)	C10-C11	1.487 (4)
S1—O2	1.4201 (17)	C10—C12	1.510 (3)
S1—N1	1.6679 (19)	C2—H2	0.9300
S1—C6	1.7475 (16)	С3—Н3	0.9300
O3—C7	1.205 (3)	C4—H4	0.9300
N1—C7	1.379 (2)	С5—Н5	0.9300
N1—C8	1.468 (3)	C8—H8A	0.9700
C1—C2	1.388 (3)	C8—H8B	0.9700
C1—C6	1.376 (3)	С9—Н9	0.9300
C1—C7	1.478 (3)	C11—H11A	0.9600
C2—C3	1.373 (4)	C11—H11B	0.9600
C3—C4	1.383 (4)	C11—H11C	0.9600
C4—C5	1.394 (3)	C12—H12A	0.9600
С5—С6	1.373 (3)	C12—H12B	0.9600
С8—С9	1.503 (3)	C12—H12C	0.9600
C9—C10	1.311 (3)		

O1···C5 ⁱ	3.391 (2)	С11…Н8А	2.6500
O1···C8 ⁱⁱ	3.347 (2)	C12···H2 ^{viii}	3.0500
O2…C9	3.253 (3)	Н2…ОЗ	2.8800
O2···C12 ⁱⁱⁱ	3.416 (3)	H2····C9 ^{vii}	3.0400
O3···C5 ^{iv}	3.308 (3)	H2…C10 ^{vii}	2.7700
O1…H8B	2.8800	H2…C12 ^{vii}	3.0500
O1…H5 ⁱ	2.5600	H3…C1 ^{vii}	3.0900
O2…H9	2.7100	H3····C7 ^{vii}	3.0400
02H8A ^v	2.5100	H4···O3 ^x	2.6700
O2···H12C ⁱⁱⁱ	2.7300	H5…O1 ⁱⁱ	2.5600
$02 \cdots H11 A^{V}$	2 6100		2 5100
03····H2	2 8800	H8403	2.5100
03···H8A	2.6300	H8AC11	2.6500
$\Omega^2 \cdots H 4^{V_i}$	2.6700	H84H114	1 9700
	2.0700		2 8800
	3.391(3)		2.8800
	3.391(2)		2.7100
	3.508 (3)	H9···H12A	2.2300
C7···C3 ^{viii}	3.591 (3)	H11AO2"	2.6100
C8···O1 ¹	3.347 (2)	нпа…с8	2.6300
C9···O2	3.253 (3)	H11A···H8A	1.9700
C12···O2 ^{ix}	3.416 (3)	H11B···H12C	2.5600
C1···H3 ^{viii}	3.0900	H11C…H12B	2.5800
C7…H3 ^{viii}	3.0400	H12A…H9	2.2300
C8…H11A	2.6300	H12B…H11C	2.5800
C9…H2 ^{viii}	3.0400	H12C…H11B	2.5600
C10····H2 ^{viii}	2.7700	H12C···O2 ^{ix}	2.7300
O1—S1—O2	117.53 (8)	C1—C2—H2	121.00
O1—S1—N1	109.81 (8)	С3—С2—Н2	121.00
O1—S1—C6	113.03 (8)	С2—С3—Н3	119.00
O2—S1—N1	109.14 (9)	С4—С3—Н3	119.00
O2—S1—C6	111.65 (9)	C3—C4—H4	120.00
N1—S1—C6	92.85 (8)	C5—C4—H4	120.00
S1—N1—C7	114.88 (14)	С4—С5—Н5	122.00
S1—N1—C8	120.21 (14)	С6—С5—Н5	121.00
C7—N1—C8	124.76 (18)	N1—C8—H8A	109.00
C2—C1—C6	119.48 (18)	N1—C8—H8B	109.00
C2—C1—C7	126.96 (18)	С9—С8—Н8А	109.00
C6—C1—C7	113.49 (16)	С9—С8—Н8В	109.00
C1—C2—C3	118.0 (2)	Н8А—С8—Н8В	108.00
C2—C3—C4	122.2 (2)	С8—С9—Н9	117.00
C3—C4—C5	120.1 (2)	С10—С9—Н9	116.00
C4—C5—C6	117.0 (2)	C10-C11-H11A	109.00
S1—C6—C1	109.79 (14)	C10-C11-H11B	109.00
01 OC OF	10(.92(15))	C10 C11 U11C	100.00

supplementary materials

123.28 (16)	H11A—C11—H11B	109.00
123.57 (19)	H11A—C11—H11C	109.00
127.42 (18)	H11B—C11—H11C	109.00
108.99 (16)	C10-C12-H12A	109.00
111.79 (19)	C10-C12-H12B	109.00
127.0 (2)	C10-C12-H12C	109.00
124.9 (2)	H12A—C12—H12B	109.00
120.5 (2)	H12A—C12—H12C	110.00
114.6 (2)	H12B—C12—H12C	109.00
116.40 (14)	C6—C1—C2—C3	0.6 (3)
-67.88 (16)	C7—C1—C2—C3	-176.00 (19)
-113.44 (14)	C2-C1-C6-S1	-177.54 (15)
62.29 (17)	C2-C1-C6-C5	-0.9 (3)
0.66 (15)	C7—C1—C6—S1	-0.5 (2)
176.38 (15)	C7—C1—C6—C5	176.15 (17)
-113.04 (13)	C2—C1—C7—O3	-0.8 (3)
70.51 (19)	C2-C1-C7-N1	177.73 (19)
111.81 (14)	C6—C1—C7—O3	-177.6 (2)
-64.64 (19)	C6—C1—C7—N1	0.9 (2)
-0.09 (14)	C1—C2—C3—C4	-0.3 (3)
-176.54 (17)	C2—C3—C4—C5	0.2 (3)
177.61 (17)	C3—C4—C5—C6	-0.4 (3)
-1.0 (2)	C4—C5—C6—S1	176.81 (15)
2.1 (3)	C4—C5—C6—C1	0.8 (3)
-176.49 (17)	N1-C8-C9-C10	-119.5 (2)
-83.37 (19)	C8—C9—C10—C11	0.3 (3)
91.9 (2)	C8—C9—C10—C12	178.9 (2)
	123.28 (16) 123.57 (19) 127.42 (18) 108.99 (16) 111.79 (19) 127.0 (2) 124.9 (2) 120.5 (2) 114.6 (2) 116.40 (14) -67.88 (16) -113.44 (14) 62.29 (17) 0.66 (15) 176.38 (15) -113.04 (13) 70.51 (19) 111.81 (14) -64.64 (19) -0.09 (14) -176.54 (17) 177.61 (17) -1.0 (2) 2.1 (3) -176.49 (17) -83.37 (19) 91.9 (2)	123.28(16) $H11A-C11-H11B$ $123.57(19)$ $H11A-C11-H11C$ $127.42(18)$ $H11B-C11-H11C$ $108.99(16)$ $C10-C12-H12A$ $111.79(19)$ $C10-C12-H12B$ $127.0(2)$ $C10-C12-H12B$ $127.0(2)$ $H12A-C12-H12C$ $124.9(2)$ $H12A-C12-H12C$ $114.6(2)$ $H12B-C12-H12C$ $116.40(14)$ $C6-C1-C2-C3$ $-67.88(16)$ $C7-C1-C2-C3$ $-67.88(16)$ $C7-C1-C6-S1$ $62.29(17)$ $C2-C1-C6-S1$ $62.29(17)$ $C2-C1-C6-S1$ $176.38(15)$ $C7-C1-C6-S1$ $176.38(15)$ $C7-C1-C7-O3$ $70.51(19)$ $C2-C1-C7-N1$ $111.81(14)$ $C6-C1-C7-O3$ $-64.64(19)$ $C6-C1-C7-N1$ $-0.09(14)$ $C1-C2-C3-C4$ $-176.54(17)$ $C2-C3-C4-C5$ $177.61(17)$ $C3-C4-C5-C6$ $1.0(2)$ $C4-C5-C6-C1$ $-176.49(17)$ $N1-C8-C9-C10$ $-83.37(19)$ $C8-C9-C10-C12$

Symmetry codes: (i) -*x*+1, -*y*+1, *z*-1/2; (ii) -*x*+1, -*y*+1, *z*+1/2; (iii) -*x*, -*y*+1, *z*+1/2; (iv) *x*, *y*, *z*-1; (v) *x*, *y*, *z*+1; (vi) *x*-1/2, -*y*+1/2, *z*-1; (vii) *x*+1/2, -*y*+1/2, *z*; (viii) *x*-1/2, -*y*+1/2, *z*; (ix) -*x*, -*y*+1, *z*-1/2; (x) *x*+1/2, -*y*+1/2, *z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5···O1 ⁱⁱ	0.93	2.56	3.391 (2)	149
C8—H8A····O2 ^{iv}	0.97	2.51	3.436 (3)	160
C3—H3···Cg1 ^{vii}	0.93	2.89	3.664 (2)	141
C_{1}	$1 = 1 \cdot (-1)^{1/2}$			

Symmetry codes: (ii) -*x*+1, -*y*+1, *z*+1/2; (iv) *x*, *y*, *z*-1; (vii) *x*+1/2, -*y*+1/2, *z*.

Fig. 1

